IPv6 Specific Issues to Track
States of Network Flows

Yasuyuki Kozakai (TOSHIBA Corporation)
Hideaki Yoshijuji (Keio University)
Hiroshi Esaki (The University of Tokyo),
Jun Murai (Keio University)

USAGI / WIDE Project
Table of Contents

• Background
 – Stateful filtering and IPv6
 – Connection Tracking subsystem on Linux

• Motivation

• Objectives

• Issues and our proposals
 – A Changed path with Type 0 Routing Header
 – Address spoofing with headers used in Mobile IPv6

• Conclusion
Background – stateful filtering and IPv6

Stateful filtering
– Today it is widely deployed in IPv4 networks
– It can discard unsolicited incoming packets from the outer network
 • To protect LAN from straightforward attacks
 • To prevent hosts on LAN from consuming resources

We believe same demands also exist on IPv6 networks
Background – Connection tracking subsystem on Linux

• **We introduced support for IPv6 stateful filtering in Linux**

 It consists of 2 parts

 – Layer 3 protocol independent connection tracking subsystem (nf_conntrack)
 * It tracks states of network flows (called ‘connection’)
 * It supports TCP, UDP, ICMP, FTP

 – Packet filter to make filter decision by state
Motivation

• We solved some IPv6 specific issues on nf_conntrack
 • Generalization of processing independence on address family
 • Special handling for fragmented packets

• But more improvements are required
 – The number of IPv6 supported devices is increasing
 – We expect that many devices will support IPv6 related extensions in next step

⇒ nf_conntrack is required to support them
Objectives

Improvements of nf_conntrack to solve following issues

• **A changed path with Type 0 Routing Header (RT0)**
 – A path of communication might be changed by using RT0
 – If the path is changed and turned back, stateful filter drops packets

• **Address spoofing with headers used in Mobile IPv6**
 – A packet might include a spoofed home address in
 • Home Address Option in Destination Options Header, or
 • Type 2 Routing Header
 – If state filter does not check their headers, it would allow the packet to pass through the firewall
Objectives

Improvements of nf_conntrack to solve following issues

• **A changed path with Type 0 Routing Header (RT0)**
 – A path of communication might be changed by using RT0
 – If the path is changed and turned back, stateful filter drops packets

• **Address spoofing with headers used in Mobile IPv6**
 – A packet might include a spoofed home address in
 • Home Address Option in Destination Options Header, or
 • Type 2 Routing Header
 – If state filter does not check their headers, it would allow the packet to pass through the firewall
A Changed path with Type 0 Routing Header (RT0)

- **A path of connection might be changed by RT0**

 e.g. A path of TCP connection was changed once and turned back

- **Issue in such situation**

 - `nf_conntrack` detects the skipped TCP sequence numbers in packets
 - `nf_conntrack` handles them as invalid

 ⇒ Stateful filter drops all packets after the path turned back
Our proposal

• **nf_conntrack restarts tracking TCP sequence numbers**
 - User specifies the condition to restart tracking
 e.g. - The address in RT0 is trusted by user
 - The user limits frequency of restarting

• **How to implement it on Linux**
 - We can utilize the table of rules evaluated before nf_conntrack
 - We need to implement a rule module to signal nf_conntrack
 ⇒ User can make various rules by combining it and traditional rules

```
ip6tables -p tcp -m rt
  --rt-type 0
  --rt-segleft 1
  --rt-0-addrs 3ffe::1
  ...... --j SEQRESTART
```

```
  packet
  "raw" table module
    rules
    Restart seq. tracking
  state table
  nf_conntrack
  Routing, Filtering
```
Objectives

Improvements of nf_conntrack to solve following issues

• A changed path with Type 0 Routing Header (RT0)
 – A path of communication might be changed by using RT0
 – If the path is changed and turned back, stateful filter drops packets

• Address spoofing with headers used in Mobile IPv6
 – A packet might include a spoofed home address in
 • Home Address Option in Destination Options Header, or
 • Type 2 Routing Header
 – If stateful filter does not check their headers, it would allow the packet to pass through the firewall
Mobile IPv6

There are 2 modes

– Bidirectional tunneling
 All traffic between Mobile Node (MN) and Corresponding Node (CN) passes through Home Agent (HA)

– Route optimization
 • After some MIPv6 signaling, MN can directly communicate with CN by
 – Type 2 Routing Header (RT2) and
 – Home Address Option (HAO) in Destination Options Header
Home address of Mobile Node in HAO and RT2

- HAO and RT2 include the home address of Mobile Node
 - `nf_conntrack` needs to handle it as the endpoint of connection

![Diagram showing network traffic and protocol headers]

IPv6 header

- **HAO**
 - **src:** MN’s care-of address
 - **dst:** CN’s address
 - **MN’s Home Address**

- **RT2**
 - **src:** CN’s address
 - **dst:** MN’s care-of address
 - **MN’s Home Address**

Endpoint of the connection
Address spoofing with headers used in Mobile IPv6

• It is easy for malicious host to send packets including spoofed home address

⇒ If stateful filter does not check HAO and RT2, it would allow them pass through the firewall

• What can stateful filter do to such packets?
Our proposal

- nf_conntrack inspects MIPv6 signaling
 - Binding Update to CN and Binding Acknowledgement from CN
 - It gets CN’s address, MN’s care-of address, MN’s home address

- nf_conntrack checks the addresses in RT2 and HAO

- Stateful filter blocks packets including unknown address in RT0 and/or HAO
What stateful filter can block by our proposal (1/2)

- Unsolicited Binding Acknowledgement
 - CN
 - Binding Ack.
 - MN
 - I have not seen Binding Update from MN yet

- Spoofed home address in HAO or RT2
 - CN
 - Address: Ca
 - Malicious host
 - IPv6 Address: H
 - RT2
 - src: H
 - dst: Mc
 - HoA: Mh
 - HAO
 - HoA: Ca
 - MN
 - Care-of Address: Mc
 - Home Address: Mh

(H, Mh, Mc) and (Mc, Ca, H) do not exist. Dropping...
What stateful filter can block by our proposal(2/2)

- Unsolicited data traffic

![Diagram showing MN and CN with Binding Update and Binding Acknowledgment packets between them. The diagram indicates that there is a binding exists, but the data traffic from MN has not been seen.]
Optional behaviors

• Binding Acknowledgement can be omitted
 ⇒ An option : Stateful filter does not require to detect Binding Acknowledgement

• CN can directly send packets to MN without MIPv6 signaling
 ⇒ An option : Stateful filter does not check CN’s address
 – It checks the home address and Care-of address of MN retrieved from Binding Update sent to other CN
Restrictions

• CN under a firewall running stateful filter

⇒ MN cannot initiate MIPv6 signaling to CN
⇒ pinhole on firewall is necessary

This is common restriction of stateful filter, not depending on MIPv6

• Encrypted Binding Update/Acknowledgement

– draft-ietf-mip6-cn-ipsec-05
⇒ There is no way of parsing them
Conclusion

We proposed 2 improvements to connection tracking

– So that \texttt{nf_conntrack} can restart tracking TCP sequence number
 ⇒ Stateful filter can allow packets pass firewall even if a path of connection is changed and turned back.

– So that \texttt{nf_conntrack} can check addresses in RT2 and/or HAO
 ⇒ stateful filter can block spoofed packets with RT2 and/or HAO

Future Work

• Implementation and evaluations
Fin.