NUTSS: An End-Middle-End Approach to Connection Establishment

Saikat Guha and Paul Francis

Cornell University

SIGCOMM 2007
End-Middle-End: Why?

Originally, Internet supposed to provide:

1. User-friendly naming of hosts (DNS)
2. Network level identification of hosts (IP address) and best-effort delivery
3. Identification of application on host (port)
Implicit assumption:

- Application can defend itself. Competent to look inside packet.
- Wrong. (DoS, software bugs, . . .)
- Resulted in firewalls
 - Compromised end-only control
 - Cannot identify application. Or hosts behind NAT.
 - Resort to deep-packet inspection
 - Endhost unaware
- Made network brittle
- Often legitimate connections fail!!!
End-Middle-End: Why?

Required additional Internet services

4. Block unwanted packets before they reach application

5. Explicit negotiation of middlebox usage.
 - Need not be on data path

End-Middle-End

These services, along with original three, represent the minimum requirements for the Internet.
NUTSS is an architecture and protocol that instantiates End-Middle-End

Primary Goal

Allow connection establishment that honors access control policy of all stakeholders (ends and middle).

Also, middlebox steering, host mobility, anycast, redirection, multi-homing, multicast, protocol negotiation
End-Middle-End and End-To-End

- E2E broken by middleboxes
 - Middlebox control in the middle
 - Endpoints oblivious of middle, cannot adapt
- EME exposes functionality in the middle
- Allows ends and middle to cooperate in middlebox control
 - Explicit two-way negotiation between ends and middle
 - firewall policy, NAT ports, protocol stack
Names vs. Identifiers

Names or identifiers?

- Identifiers are scalable, efficient, can be self-certifying BUT not for the middle
- Middle needs (user-friendly) names for policy
- Must be aggregatable
 - Identifiers (HIP, i3, DONA) don’t allow for this
 - Need additional reverse name resolution
- Internet-wide shared namespace
Where is policy applied?

- **On-path (on the data path)**
 - Privacy (for address-based paths\(^1\))
 - Constraining (name-resolvers on-path)
 - Intrusive (routers route by name)

- **Off-path (separate control plane)**
 - Replicate, deploy far from endpoint (DoS, scalability)
 - But data path is address-based

\(^1\) “Identity Trail: Covert Surveillance Using DNS” in PET ’07
Address-routed path, off by default
Name-routed path, on by default
Overlay of stakeholders.
Address-routed path, off by default
Name-routed path, on by default
Overlay of stakeholders.
- Address-routed path, off by default
- Name-routed path, on by default
- Overlay of stakeholders.
Address-routed path, off by default
Name-routed path, on by default
Overlay of stakeholders.
- Address-routed path, off by default
- Name-routed path, on by default
- Overlay of stakeholders.
Turning on data path

How to determine impending data path?

- Control plane fixes path
 - Constraining (virtual circuit)
- Control plane guesses path
 - Recovers from incorrect guess
User-friendly, long-term stable, aggregatable names

Off-path signaling
- Name-based overlay
- Applies policy
- Authorization token

On-path signaling (of token)
- Verify data-path works
- Referral back to off-path if fail
NUTSS: Components

- P-Box/M-Box associated, possibly same device
- Also in-host
- P-Box overlay (parent-child, fan-in, fan-out)
P-Box/M-Box associated, possibly same device
Also in-host
P-Box overlay (parent-child, fan-in, fan-out)
P-Box/M-Box associated, possibly same device
Also in-host
P-Box overlay (parent-child, fan-in, fan-out)
Endpoints register with P-Box chain in front. DNS has outermost P-Box address.
NUTSS: Name-Routing

Up (config./discovery), Across (DNS), Down (registration)
NUTSS: Name-Routing (Tokens)

- P-Box gives token \(\langle \text{nonce, next-hop} \rangle \) to M-Box via endpoint.
- Set of tokens. One for each P-Box/M-Box pair.
- Exchange effective addresses (may be of M-Box)
Once endpoint has effective address and tokens
NUTSS: Referral

What if address and name routed paths differ
NUTSS: Referral

Referral from M-Box to P-Box
Resumes name-routed signaling for more tokens
Resumes name-routed signaling for more tokens
NUTSS: Some Use Cases

- Mobility
 - Register new address with P-Box overlay.
 - Renegotiate flows.
- NAT Traversal
 - Exchange hole-punched address and port over name-routing
- Anycast, Multicast
 - Multiple endpoints share same name
 - P-Box forwards to one (to all for multicast).
 - Address routed path negotiated (possibly application multicast or IP multicast)
- Protocol negotiation
 - Endpoints advertise software stack (transport, security, network etc.)
 - P-Box filter out unsupported stacks
1. Update applications to perform dual-signaling. 3-rd party P-Box service.
 - Implemented as a userspace library. Works with legacy apps.
 - P-Box service on nutss.net
 - NAT traversal helper M-Box on Planetlab

2. Networks deploy P-Boxes. Only weak access control (but better than firewalls today).

Summary and Future Work

- End-Middle-End requirements, NUTSS architecture and protocol.
- Need for dual-signaling: Name-routed and address-routed signaling.
- Coupling between the two can solve a broad range of Internet problems:
 - Network ACL, mobility, multihoming, steering, protocol negotiation, ...
- Pursued in the E-M-E RG in the IRTF.
- Investigate non-FQDN based naming, non-DNS “across” routing, multipath connections, secure P-Box discovery.

http://nutss.net/
Related Work

- Endpoint-only control
 - TRIAD, i3, IPNL, HIP, SHIM6
- Middle involved only in name resolution
 - Metanet, Plutarch, UIA, DONA, AVES

- Off-path only
 - SIP
- On-path only
 - i3, HIP, RSVP
NUTSS: Optimizations

- Lower latency
 - Piggyback application-data in signaling messages
- Faster authorization
 - Use self-certifying ID’s
NUTSS: Dual-Signaling

Name-routed
- \langle \text{user@domain, app} \rangle
- P-Boxes (overlay)
- Path always exists (Default on)
- Policy decision
- Tokens

Address-routed
- IP address\(^2\) and port
- M-Boxes (on IP path)
- Initially, does not exist or blocked (Default off)
- Policy enforcement
- Referral

\(^2\)or other address e.g. i3, HIP, etc.