A Light-Weight Distributed Scheme for Detecting IP Prefix Hijacks in Real-Time

Lusheng Ji†,
Joint work with Changxi Zheng‡, Dan Pei†, Jia Wang†, Paul Francis‡

† AT&T Labs - Research
‡ Cornell University

Outline

• Background
• Algorithms and Justifications
• Evaluation
• Conclusion
Prefix Hijacking Exploits BGP Authentication Weakness

BGP - the de facto inter-domain routing protocol
- Path vector protocol
- Lacking “authenticity” checking capability

Prefix hijacking: routers falsely advertise routes

Types of Prefix Hijacking
Current Approaches to Prefix Hijacking Prevention and Detection

- **Prevention**
 - Software/configuration changes
 - Public Key Infrastructure or other authentication mechanisms
 - Deployment hurdles

- **Detection**
 - BGP update message and routing table inspection and anomaly/signature detection
 - Limited vantage point locations
 - Difficult to be “real-time”
 - Often requiring privileged access
 - High false positive rates

New Approach: Data Plane Monitoring

Benefits
- Can have multiple strategically placed vantage points
 - Gotta have multiple
 - At good locations
 - Distributed work load
 - Distributed traffic load
- Potential of extending to overlay detection architecture
 - Robustness
 - Scalability
- Easily deployable, and anybody can do it.
Monitoring Prefix Network Location

The First observation

If a prefix is hijacked, the paths observed from certain vantage points to the prefix would likely exhibit significant changes.

Let’s start from monitoring the vantage point-to-target prefix paths
- What to measure

End-to-end Network Distance Measurement

End-to-end measurements
- Easy to obtain
- Low overhead

- Take one: end-to-end delay
 - Information rich
 - Not a good measurement target
- Take two: hop count
 - Relatively stable
 - Seems promising
Measurement Setup

Monitors (measurement sources)
- 43 Planetlab nodes (25 ASes)

Target prefixes (measurement destinations)
- Identified from RouteView and RIPE BGP tables
- 242 MOASes
- 125 SOASes

1 full month of data
- One hop count measurement for each path every 12 minutes

Hop Count Stability and Change Detection

- Time Series Analysis
 - Short-term moving average differs significantly from long-term moving average

Hop count relative variance
... But ...

Detection only based on hop count change may result in large false-positive ratios
 - Hop count is not that stable
 - How to quantify “significant”
 - Other reasons for “significant” hop count changes
 - MOAS changing entry/exit point
 - Traffic engineering
 - Natural/human disasters causing large Internet topology changes
 - Mis-configurations

Inspiration: Stuck in Traffic
Path Disagreement

Reference point
- As close to the target prefix as possible but outside of the target prefix AS.

Are path to a network and path to the reference point of the network similar?

Experiments on Planet-lab
- L1: longer path (i.e. path to a destination network).
- L2: shorter path (i.e. path to the reference point).
- Compute the “similarity” between L1 and L2:
 - L1’: the sub-path of L1 that starts from the same origin (source), but with length of |L2|.
 - HD: Hamming Distance.
 - S: path similarity.

$$s = 1 - \frac{HD(L_1', L_2)}{|L_2|}$$
Measurement Setup

Use the same set of monitors and target prefixes as before
One reference point for each monitor-to-target prefix path
Run a pair of traceroute probes every 12 minutes
 - Traceroute from monitor to target prefix
 - Traceroute from monitor to the reference point of the target prefix
One week of data
Convert hop by hop paths to AS paths
 - “Holes” in traceroute results
 - IP to AS mapping

AS Path Similarity

![Graph showing AS Path Similarity](image)
Hijacking Detection Scheme in a Nutshell

1. Select a set of monitors for each target prefix
2. Each monitor periodically measures the network distance to each target prefix and detects significant changes in network distance measurements
3. If a significant distance change is detected, the monitor measures the similarity between the path to the target prefix and the path to the reference point of the target prefix

Evaluation Methods

- We are about data plane and “real-time”
 - Difficult to evaluate using historical data
- Catching real hijacking attacks red handedly
 - But......
- Build simulation
 - Construct simulation scenarios based on real Internet topology
Simulating Prefix Hijacking Attacks

Imposture attacks
- One Planetlab node as the monitor \(s \)
- One target prefix as the victim \(t \)
- Another Planetlab node or target prefix as the hijacker \(h \)
- If \(s \) is closer to \(h \) than \(t \), imposture attack affects monitor, then
 \[p(s,t) = p(s,h). \]
- Repeat for all possible selections of \(s, h, \) and \(t \)

Total of 34K imposture scenarios

Simulating Prefix Hijacking Attacks

Interception attacks
- Planetlab node as the monitor \(s \)
- Target prefix as the victim \(t \)
- Another Planetlab node as the hijacker \(h \)
- If \(s \) is closer to \(h \) than \(t \), interception attack affects monitor \(s \),
 \[p(s,t) \approx \text{cat}(p(s,h), p(h,t)) \]
- Repeat for all possible selections of \(s, h, \) and \(t \)

Total of 25K interception scenarios
Hop Count Changes Due to Hijacking

AS Path Similarity After Hijacking

Path similarity decreases after hijacking.
Hijacking Detection Accuracy

<table>
<thead>
<tr>
<th>Thresholds</th>
<th>False positive ratio</th>
<th>False negative ratio (interception)</th>
<th>False negative ratio (interception)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hop count, AS path</td>
<td>Hop count</td>
<td>Hop count</td>
<td>Hop count</td>
</tr>
<tr>
<td>0.04, 1.12</td>
<td>0.797%</td>
<td>0.223%</td>
<td>0.003%</td>
</tr>
<tr>
<td>0.125, 1.20</td>
<td>0.506%</td>
<td>0.199%</td>
<td>0.003%</td>
</tr>
<tr>
<td>0.25, 1.20</td>
<td>0.504%</td>
<td>0.192%</td>
<td>0.003%</td>
</tr>
<tr>
<td>0.25, 1.30</td>
<td>0.194%</td>
<td>0.173%</td>
<td>0.014%</td>
</tr>
</tbody>
</table>

Discussion and Future Work

- Multiple monitors
 - Location and confidence level
- Granularity of detection
 - Subnet hijacking
- Counter measures
- Deployment
Conclusion

A light-weight distributed scheme for detecting IP prefix hijacks by conducting measurements in the data plane

• Hop count stability
• AS path similarity

Advantages
• Highly accurate
 - low false positive rate and low false negative rate
• Real-time
• Easy deployment
• Highly robust on monitor failure and attacker evasion

Thank You
Stability of Hop Counts

Change ratio over time

Change ratio: ratio of hop count of a later bin to that of an earlier bin

Hijacking Detection Latency

(a) Number of probes for imposture
(b) Number of probes for interception